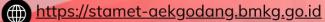


BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA

BULETIN STASIUN METEOROLOGI AEK GODANG

DIRGAHAYU


70


NUSANTARA BARU INDONESIA MAJU

EDISI AGUSTUS 2024

Bandara Aek Godang, Jl. Aek Godang Sibuhuan, Km. 1,5, Padang Lawas Utara [22737]

BULETIN METEOROLOGI

TIM REDAKSI

Pelindung:

Muchamad Nur, S.Kom Kepala Stasiun Meteorologi Aek Godang

Pemimpin Redaksi:

Muhammad Fahmi rangkuti,SP

Sekretaris:

Donny Fernando, S.Tr

Anggota:

Novica Rizky Yulita Mora, S.Tr.Met
Dolli Rais Harahap, S.Tr
Joko Santoso, S.Tr
Megawati Putri, S.Tr.Ins
Muh. Musa Yoga, S.Tr.Met
Evi Mariani Harahap, S.Kom

Alamat Redaksi:

Bandara Aek Godang Jl. Aek Godang-Sibuhuan KM 1,5 Stasiun Meteorologi Aek Godang Telp: 08116251017

Email:

fodaekgodang@gmail.com/
stamet.aekgodang@bmkg.go.id

Facebook:

Stasiun Meteorologi Aek Godang

Instagram:

Infobmkg tapsel

Web:

Stamet-aekgodang.bmkg.go.id

KATA PENGANTAR

Berkat Rahmat Tuhan Yang Maha Esa, Buletin Stasiun Meteorologi Aek Godang yang berisi rangkuman informasi Meteorologi di wilayah Aek Godang selama Bulan Juli 2024 telah selesai. Buletin ini disusun berdasarkan hasil analisis pemantauan dan pengamatan baik unsur—unsur cuaca lokal wilayah Aek Godang maupun faktor—faktor global dan regional yang turut mempengaruhi kondisi cuaca disekitar wilayah Aek Godang.

Di samping itu juga disampaikan prakiraan bulan Agustus, September dan Oktober 2024 antara lain informasi dan prakiraan ENSO, IOD, SST dan Hujan yang berpeluang terjadi di wilayah Tapanuli Bagian Selatan.

Buletin ini dapat digunakan untuk masyarakat pada umumnya untuk menganalisis dan merencanakan berbagai kegiatan khususnya di daerah Sumatera Utara bagian Selatan.

Akhir kata, kami mengucapkan terimakasih yang sebesar-besarnya atas partisipasinya dalam penerbitan buletin ini. *Semoga bermanfaat......*

Aek Godang, Agustus 2024 Kepala Stasiun

Meteorologi Aek Godang

Muchamad Nur, S.Kom

DAFTAR ISI

KATA PENGANTAR					
KARAKTERISTIK KONDISI CUACA & IKLIM AEK GODANG4					
I. ANALISIS DAN PREDIKSI DINAMIKA ATMOSFER DAN LAUT					
1.1. Pengertian5					
A. El Nino Southem Oscillation (ENSO)					
B. Indian Ocean Dipole (IOD)					
C. Sea Surface Temperature (SST)					
D. Curah Hujan6					
E. Curah Hujan Ektrim6					
F. Sifat Hujan6					
G. Zona Musim dan Tipe Musim					
H. Wilayah Zona Musim dan Tipe Musim7					
1.2. Kondisi Dinamika Atmosfer dan Laut Bulan Juli 2024					
A. El Nino Southem Oscillation (ENSO)					
B. Indian Ocean Dipole (IOD)8					
C. Anomali Suhu Muka Laut					
D. Maden Julian Osilation (MJO)					
II. PANTAUAN CUACA					
2.1. Kondisi Cuaca Wilayah Aek Godang Bulan Juli 2024					
2.1.1 Temperatur Udara					
2.1.2 Durasi Penyinaran Matahari					
2.1.3 Curah Hujan13					
2.1.4 Tekanan Udara					
2.1.5 Kelembaban Udara					
2.1.6 Arah dan Kecepatan Angin14					
2.1.7 Titik Panas Hotspot					

2.2. PREDIKSI DINAMIKA ATMOSFER DAN LAUT (SST, El Nino/ La Nina dan IOD)					
2.3 Prakiraan Awal Musim Hujan Provinsi Sumatera Utara 202418					
2.4 Prakiraan Puncak Musim Hujan Provinsi Sumatera Utara 2024					
2.5. Prakiraan Curah Hujan dan Sifat Hujan Bulan Agustus ,September dan Oktober 2024 Tapanuli Selatan Sekitarnya - Sumatera Utara					
2.3.1 Prakiraan Curah Hujan dan Sifat Hujan Bulan Agustus 202420					
2.3.2 Prakiraan Curah Hujan dan Sifat Hujan Bulan September 2024 21					
2.3.3 Prakiraan Curah Hujan dan Sifat Hujan Bulan Oktober 202422					
III. DATA KLIMATOLOGI STASIUN METEOROLOGI AEK GODANG23					
3.1. Data Klimatologi					
- Rata-rata penyinaran matahari dan rata-rata penyinaran matahari bulanan 2011-2023					
- Rata-rata suhu udara dan rata-rata suhu udara bulanan tahun 2011-2023 23					
-Jumlah total curah hujan dan rata-rata jumlah curah hujan bulanan tahun 2011- 202324					
-Rata-rata RH dan rata-rata RH bulanan tahun 2011- 2023					
- Rata-rata Tekanan dan rata-rata Tekanan bulanan tahun 2011-202325					
DAFTAR ISTILAH					

KARAKTERISTIK KONDISI CUACA & IKLIM AEK GODANG

Kondisi cuaca dan iklim di wilayah Aek Godang tidak terlepas dari beberapa faktor baik skala lokal, regional dan alobal. Keragaman hujan di wilayah Aek Godang bergantung pada kondisi atmosfernya, yang secara umum dipengaruhi oleh aktivitas dari berbagai fenomena seperti MJO (Madden Julian Oscillation), Suhu Muka Laut di perairan sekitar Sumatera, yang masingmasing berperan terhadap ketersediaan air dalam pembentukan uap awan. Sedanakan aktivitas gangguan tropis disekitar wilayah Indonesia maupun monsun dapat mempengaruhi pola angin yang dapat memicu penumpukan masa udara di wilayah Aek Godang dan sekitarnya.

I. ANALISIS DAN PREDIKSI DINAMIKA ATMOSFER DAN LAUT

1.1 PENGERTIAN

A. El Nino Southern Oscillation (ENSO)

El Nino Southern Oscillation (ENSO) merupakan fenomena global dari sistem interaksi lautan atmosfer yang di tandai dengan adanya anomali suhu permukaan laut di wilayah Ekuator Pasifik Tengah dimana jika anomali suhu permukaan laut di daerah tersebut **positif** (lebih panas dari rata-ratanya) maka disebut **El Nino**, namun jika anomali suhu permukaan laut **Negatif** disebut **La Nina**. Sementara itu dampak pengaruh El Nino di Indonesia, sangat tergantung dengan kondisi perairan wilayah Indonesia.

El Nino yang berpengaruh terhadap pengurangan curah hujan secara drastis, baru akan terjadi bila kondisi suhu perairan Indonesia cukup dingin. Namun bila kondisi suhu perairan Indonesia cukup hangat, El Nino tidak menyebabkan kurangnya curah hujan secara signifikan di Indonesia. Disamping itu, mengingat luasnya wilayah Indonesia, tidak seluruh wilayah Indonesia dipengaruhi oleh El Nino. Sedangkan El Nino secara umum menyebabkan curah hujan di Indonesia meningkat apabila disertai dengan menghangatnya suhu permukaan laut di perairan Indonesia. Seperti halnya El Nino, dampak La Nina tidak berpengaruh ke seluruh wilayah Indonesia.

B. Indian Ocean Dipole (IOD)

IOD merupakan fenomena interaksi laut-atmosfer di Samudera Hindia yang dihitung berdasarkan perbedaan antara anomali suhu muka laut perairan pantai timur Afrika dengan perairan di sebelah barat daya Sumatera. Perbedaan nilai anomali suhu muka laut dimaksud disebut sebagai Dipole Mode Indeks (DMI).

Untuk DMI **positif**, umumnya berdampak kurangnya curah hujan di Indonesia bagian barat, sedangkan nilai DMI **negatif**, secara umum berdampak meningkatnya curah hujan di Indonesia bagian barat.

C. Sea Surface Temperature (SST)

SST adalah suhu permukaan laut, SST berkaitan dengan suhu pada ketinggian atau kedalaman tertentu dari permukaan laut. Pada umumnya pengukuran ini menggunakan citra satelit pada channel infrared. Namun tetap dilakukan pengukuran oleh Stasiun Meteorologi Maritim secara konvensional di lautan sebagai koreksi terhadap nilai yang dihasilkan satelit.

D. Curah Hujan (mm)

Merupakan ketinggian air hujan yang jatuh pada tempat datar dengan asumsi tidak menguap, tidak meresap dan tidak mengalir. Curah hujan satu 1 (satu) mm adalah air hujan setinggi 1 (satu) mm yang jatuh (tertampung) pada tempat yang datar seluas 1 m^2 , mengalir sebagai alir permukaan dan meresap ke dalam tanah.

E. Curah Hujan Ekstrim

Adalah curah hujan dengan intensitas > 50 mm/hari menjadi parameter terjadinya hujan dengan intensitas lebat, sedangkan kriteria curah hujan ekstrim memiliki curah hujan dengan intensitas > 150 mm/hari.

F. Sifat Hujan

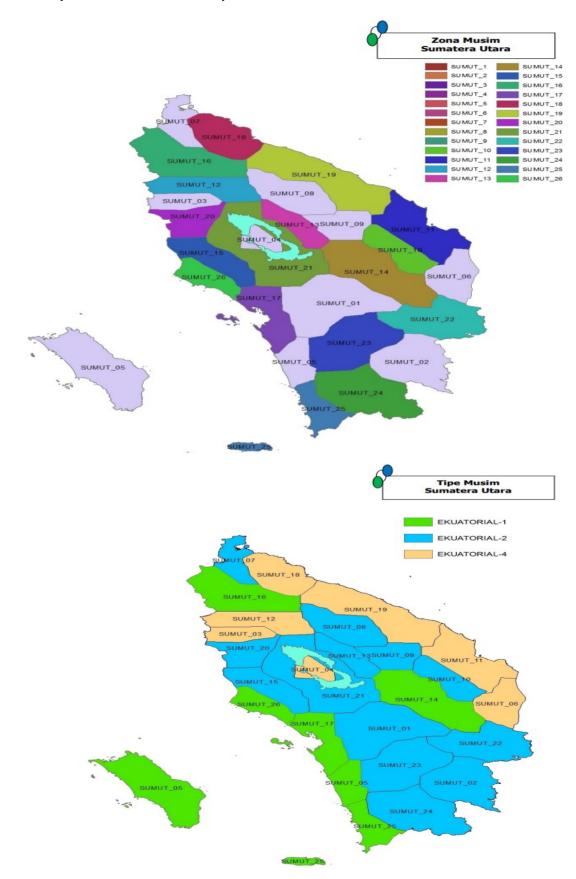
Merupakan perbandingan antara jumlah curah hujan kumulatif selama satu bulan di suatu tempat dengan rata-rata atau normalnya selama periode 30 tahun (1991-2020) pada bulan dan tempat yang sama. Sifat hujan dibagi menjadi 3 kategori, yaitu:

a. Atas Normal (AN):

jika nilai perbandingannya > 115 % atau lebih rinci lagi dibagi dalam tiga kategori yaitu : 116 % -150 % , 151 % - 200 % dan > 200 %.

b. Normal (N):

Jika perbandingannya antara 85 % - 115 %.

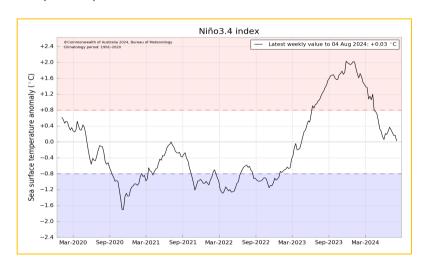

c. Bawah Normal (BN):

Jika nilai perbandingannya < 85 % atau dengan lebih rinci lagi dibagi dalam tiga kategori yaitu : 0 – 30 %, 31 % - 50 %, dan 51 % - 84 %.

G. Zona Musim dan tipe Musim

Zona Musim (ZoM) adalah wilayah yang pola hujan rata-ratanya memiliki perbedaan yang jelas antara periode musim kemarau dan periode musim hujan. Zona musim memiliki beberapa **Tipe Musim** yang ditentukan berdasarkan pola hujan tahunannya. Wilayah Zona Musim (ZoM) telah ditetapkan secara nasional berdasarkan hasil pemuktahiran zona musim di seluruh propinsi di Indonesia. Propinsi Sumatera Utara terdiri atas 26 zona musim yang terdiri dari EKUATORIAL-1 terdiri dari 6 zona musim, EKUATORIAL – 2 terdiri dari 13 zona musim dan EKUATORIAL – 4 terdiri dari 7 zona musim.

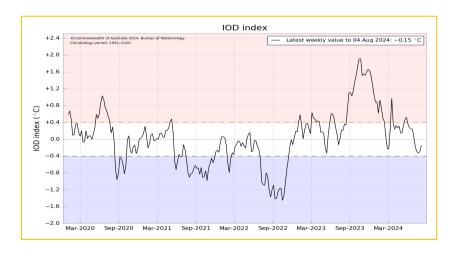
H. Wilayah Zona Musim dan Tipe Musim Sumatera Utara


Gambar. 1.1.1 Peta Zona Musim Sumatera Utara

1.2 KONDISI DINAMIKA ATMOSFER DAN LAUT BULAN JULI 2024

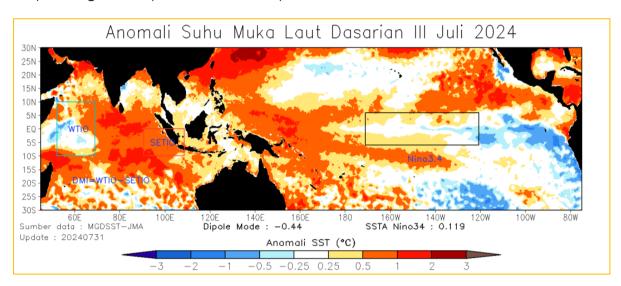
Analisis dinamika atmosfer meliputi perkembangan El nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), sirkulasi angin (Monsun), Outgoing Longwave Radiation (OLR) dan Sea Surface Temperature (SST) / Suhu Permukaan Laut di Indonesia.

A. El Nino Southern Oscillation (ENSO)


Indeks bulanan Nino 3.4 bernilai +0.03(update tanggal 04 Agustus 2024) masuk dalam kategori El Nino Netral. Hal ini mengindikasikan bahwa fenomena ENSO tidak berpengaruh terhadap pergerakan aliran massa uap air ke wilayah Indonesia untuk proses pertumbuhan awan-awan konvektif.

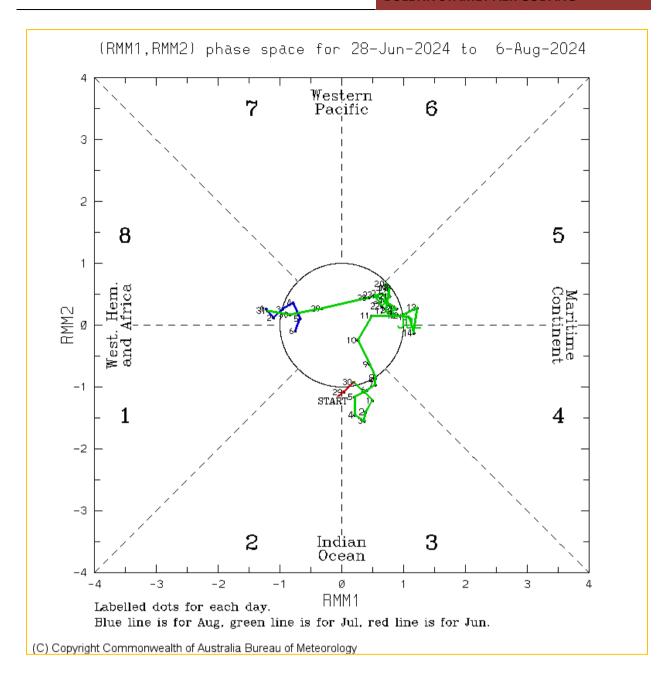
Gambar. 1.2.1 Indeks NINO 3.4 Bulan Juli 2024

B. Indian Ocean Dipole (IOD)


Indeks Dipole Mode pada bulan Juli 2024 (update tanggal 04 Agustus 2024) bernilai -0.15. Dimana Kondisi ini dalam kategori Netral, yang artinya tidak berpengaruh tehadap peningkatan curah hujan di wilayah Indonesia bagian Barat.

Gambar. 1.2.2 Indeks IOD Bulan Juli 2024

C. Anomali Suhu Permukaan Laut


Nilai Anomali Suhu Permukaan Laut di sekitar wilayah perairan Indonesia bagian barat pada bulan Juli 2024 berkisar antara 0.25°C – 1.0°C. Hal ini berpotensi menyebabkan penguapan di sekitar Samudera Hindia atau Barat Sumatera yang berpeluang dalam proses terbentuknya awan-awan konvektif.

Gambar 1.2.3 SST Bulan Juli 2024

D. Madden Julian Oscillation (MJO)

MJO aktif di Indoseia bagian barat ketika berada di fase 2 dan 3 terutama berada di dalam lingkaran. Pada bulan Juli 2024 MJO aktif dari tanggal 1 – 8 Juli 2024 berada pada fase 3 yang artinya berpengaruh terhadap pertumbuhan awan konvektif di wilayah Indonesia bagian barat, MJO pada tanggal 9 – 12 dan 15 – 30 Juli 2024 berada pada fase 2 tidak aktif, yang artinya tidak berpengaruh terhadap pertumbuhan awan konvektif di wilayah Indonesia bagian barat.

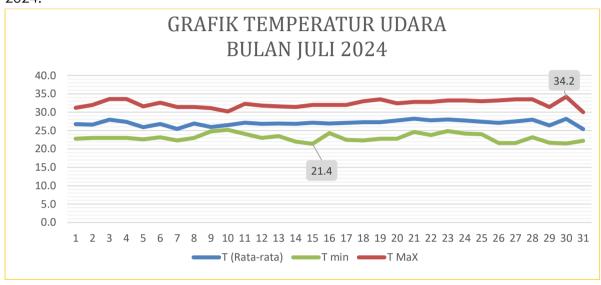
Gambar 1.2.5 Peta MJO Bulan Juli 2024

Data Curah Hujan Bulanan dan Normal Hujan

	DATA CURAH HUJAN DAN HARI HUJAN BULANAN LOKASI : Stasiun Meteorologi Aek Godang											
	TAHUN : 1997 - 2020											
TAHUN	JANUARI	PEBRUARI	MARET	APRIL	MEI	JUNI	JULI	AGUSTUS	SEPTEMBE	OKTOBER	NOPEMBER	DESEMBER
1997	133.8	107.3	151.4	157.0	69.1	57.8	44.1	24.7	244.8	93.0	235.0	133.1
1998	383.2	85.6	198.7	207.6	123.6	18.3	135.7	380.5	169.6	40.3	81.5	454.0
1999	194.4	267.1	129.5	47.3	119.6	195.0	42.3	98.7	263.4	294.3	266.0	190.0
2000	212.3	75.7	85.3	46.0	23.3	30.5	36.2	121.1	283.2	90.1	407.5	127.1
2001	213.5	164.8	35.3	317.8	48.7	4.0	33.0	11.8	185.5	122.0	64.0	151.5
2002	329.5	49.0	169.0	207.8	432.0	75.0	35.0	193.0	222.6	278.0	557.0	509.4
2003	344.4	473.8	235.5	187.4	84.6	66.3	75.8	125.5	180.3	166.2	493.7	176.0
2004	210.4	163.2	168.9	45.1	44.8	5.5	87.3	6.0	402.9	234.7	587.0	22.0
2005	180.8	118.7	47.1	134.8	49.0	134.8	9.0	96.7	134.8	31.6	181.5	17.5
2006	63.2	308.1	50.7	74.9	55.0	36.0	9.0	145.5	673.0	282.1	199.2	468.0
2007	189.0	77.7	182.4	185.7	150.7	78.4	297.5	145.6	131.5	140.4	125.5	295.2
2008	213.1	108.7	320.1	173.4	87.2	140.8	89.0	214.9	94.1	285.2	142.3	230.8
2009	237.6	125.6	334.0	255.7	44.9	54.3	23.2	200.9	81.5	204.7	319.8	344.8
2010	308.7	370.6	132.1	204.1	235.9	163.5	141.2	83.4	179.9	40.8	323.8	208.1
2011	201.9	161.7	178.9	185.6	59.2	13.6	23.4	65.0	83.4	318.7	322.1	282.2
2012	57.7	393.7	92.7	328.9	66.9	102.5	120.0	47.8	74.6	259.9	277.4	456.5
2013	385.3	151.0	264.5	135.3	139.8	105.6	19.1	124.1	104.4	217.8	267.2	298.0
2014	321.3	24.8	157.0	316.2	302.8	12.6	15.1	187.0	119.7	462.0	520.2	317.5
2015	470.5	42.5	181.1	185.8	124.9	134.8	125.9	420.3	101.8	252.3	563.5	204.6
2016	78.3	153.5	140.5	192.8	159.9	19.8	69.9	28.0	24.4	47.1	177.1	145.3
2017	295.7	159.8	320.2	239.9	163.4	108.4	17.1	229.31	88.9	149.7	127.9	159.4
2018	135.6	102.7	192.4	212.0	170.9	71.4	25.6	74.7	171.7	293.5	198.7	281.1
2019	130.0	195.9	126.3	184.1	201.2	132.0	101.9	70.9	177.7	398.5	168.4	353.8
2020	316.7	95.4	178.1	230.1	73	181	174.5	98.4	236.1	41.8	357.2	166.3
UMLAH	5606.9	3976.9	4071.7	4455.3	3030.4	1941.9	1750.8	3193.8	4429.8	4744.7	6963.5	5992.2
RATA2	233.6	165.7	169.7	185.6	126.3	80.9	73.0	133.1	184.6	197.7	290.1	249.7
SD	108.5	116.3	81.8	79.0	94.6	58.3	68.1	104.3	133.4	120.2	158.8	134.1
115%	268.7	190.6	195.1	213.5	145.2	93.0	83.9	153.0	212.3	227.4	333.7	287.1
85%	198.6	140.8	144.2	157.8	107.3	68.8	62.0	113.1	156.9	168.0	246.6	212.2

Keterangan:

SD : Standart Defiasi (Mengukur Penyimpangan Nilai terhadap rata-rata) 85 % - 115 % = Sifat Hujan (Normal)


Untuk Jumlah Pengukuran Curah Hujan Selama Bulan Juli 2024 di BMKG Aek Godang adalah 47.8 mm (DCH) dengan demikian Sifat Hujan Bulan Juli 2024 di BMKG Aek Godang adalah **Dibawah Normal**.

II. PANTAUAN CUACA

2.1 Kondisi Cuaca Wilayah Aek Godang Bulan Juli 2024

2.1.1 Temperatur Udara

Temperatur udara rata-rata di Aek Godang pada Bulan Juli 2024 yaitu 27.1 °C. Temperatur udara terendah yaitu 21.4 °C terjadi pada tanggal 15 Juli 2024, sedangkan temperatur udara tertinggi yaitu 34.2 °C terjadi pada tanggal 30 Juli 2024.

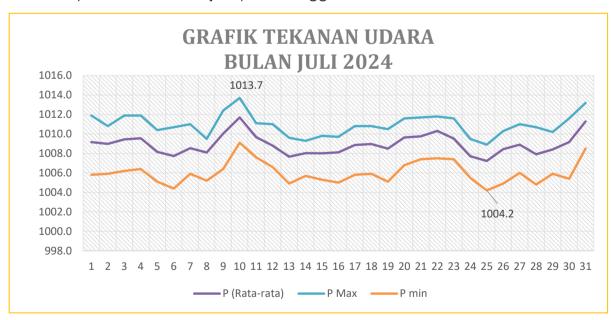
Gambar 2.1.1.1 Grafik Suhu Udara Bulan Juli 2024

2.1.2 Durasi Penyinaran Matahari

Durasi penyinaran matahari paling lama terjadi pada tanggal 13 Juli 2024 yaitu selama 10.9 jam, sedangkan pada tanggal 08 dan 31 Juli 2024 merupakan durasi penyinaran matarahari terendah yaitu 2.2 Jam. Rata-rata penyinaran matahari pada bulan Juli 2024 adalah 7.4 jam.

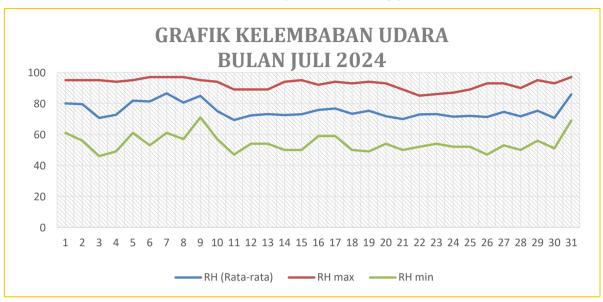
Gambar 2.1.2.1 Grafik Durasi Penyinaran Matahari Bulan Juli 2024

2.1.3 Curah Hujan


Curah Hujan Harian terbanyak pada Bulan Juli 2024 sebesar 30.1 mm yang terjadi pada tanggal 07 Juli 2024. Hari Tanpa Hujan Bulan Juli 2024 sebanyak 26 hari dan Jumlah Hari Hujan Bulan Juli 2024 sebanyak 5 hari. Jumlah curah hujan pada bulan Juli 2024 adalah 47.8 mm.

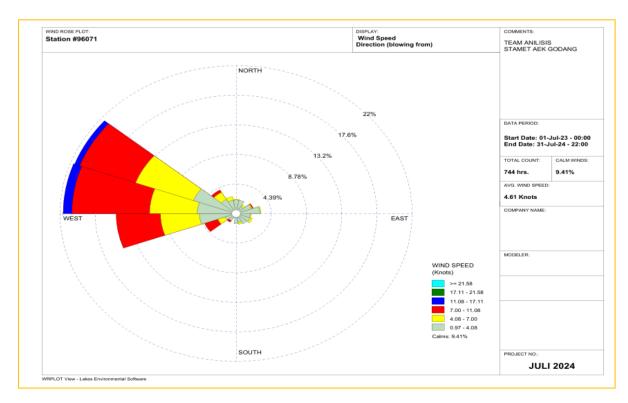
Gambar 2.1.3.2 Intensitas Curah Hujan Bulan Juli 2024

2.1.4 Tekanan Udara


Rata-rata Tekanan Udara Bulan Juli 2024 yaitu 1008.9 mb. Tekanan Udara Maksimum terjadi pada Tanggal 10 Juli 2024 yaitu 1013.7 mb dan Tekanan Udara Minimum yaitu 1004.2 mb terjadi pada tanggal 25 Juli 2024.

Gambar 2.1.4.1 Grafik Tekanan Udara Bulan Juli 2024

2.1.5 Kelembaban Udara


Rata-rata Kelembaban Udara Bulan Juli 2024 yaitu 75 %. Kelembaban Maksimum sebesar 97 % terjadi pada tanggal 06, 07,dan 31 Juli 2024, sedangkan Kelembaban Minimum sebesar 46 % terjadi pada tanggal 03 Juli 2024.

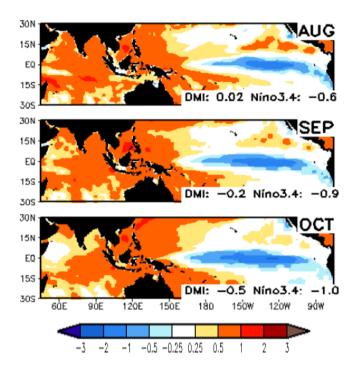
Gambar 2.1.5.1 Grafik Kelembaban Udara Bulan Juli 2024

2.1.6 Arah dan Kecepatan Angin

Pada Bulan Juli 2024 Arah Angin Permukaan Terbanyak di Stasiun Meteorologi Aek Godang dari Arah Timur. Kecepatan Rata-rata Angin Permukaan berkisar 4 knots. Angin dengan Kecepatan Maksimum pada Bulan Juli 2024 mencapai 24 knots terjadi pada tanggal 25 Juli 2024.

Gambar 2.1.6.1 Diagram Arah dan Kecepatan Angin Bulan Juli 2024

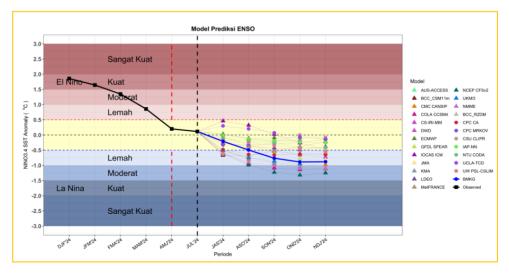
2.1.7 Titik Panas Hotspot


Pantauan satelit Terra, SNPP, NOAA20 dan Aqua, pada Bulan Juli 2024 Terpantau Hotspot (dengan tingkat kepercayaan 8 (Sedang) – 9 (Tinggi) sebanyak 48 titik di wilayah Sumatera Utara Bagian Selatan.

NO	SUMATERA UTARA BAGIAN SELATAN BULAN MEI 2024						
	LOKASI	JUMLAH TITIK PANAS					
1	PADANG SIDEMPUAN	0					
2	TAPSEL	13					
3	PALUTA	6					
4	MADINA	12					
5	PALAS	6					
6	LABUAN BATU SELATAN	11					
	TOTAL:	48					

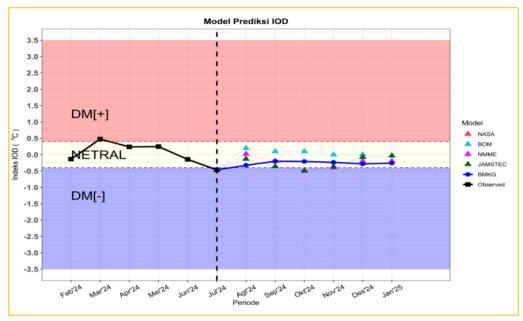
Tabel 2.1.7.1 Jumlah titik Hotspot bulan Juli 2024

2.2 PREDIKSI DINAMIKA ATMOSFER DAN LAUT (SST, El Nino/ La Nina dan IOD)


- A. Prakiraan Dinamika Atmosfer dan Laut
 - a. Prediksi Anomali SST

Gambar, 2.2.1 Prediksi Anomali SST

Prakiraan anomali Suhu Permukaan Laut di wilayah Nino 3.4 pada bulan Agustus 2024 diprakirakan berada dalam kondisi anomali Netral hingga anomali negative. Sedangkan Prakiraan anomali suhu permukaan laut Indonesia pada bulan September - Oktober 2024 di wilayah bagian barat juga dalam kondisi netral hingga anomali negative (dingin).


b. Prediksi ENSO

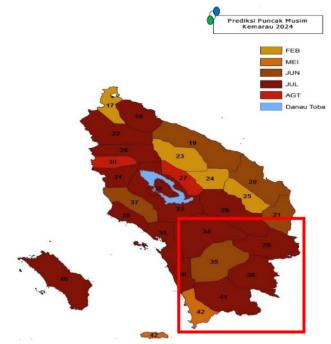
Gambar. 2.2.2 Prediksi ENSO

Prakiraan ENSO dari BMKG dan beberapa Pusat Iklim Dunia memprediksikan kondisi Netral berpotensi menuju La Nina mulai periode Agustus 2024.

c. Prediksi IOD

Gambar. 2.2.3 Prediksi Anomali IOD

Prakiraan Indeks Dipole Mode (IOD) dari BMKG dan beberapa Pusat Iklim Dunia memprediksi IOD bersifat netral akan berlangsung Agustus 2024 hingga Januari 2025.


Prediksi Awal Musim Kemarau 2024 MEI II MEI II MEI II JUN II JUN II JUN II JUN II JUN II TIPE 1 MUSIM Danau Toba 30 31 32 27 33 38 28 21

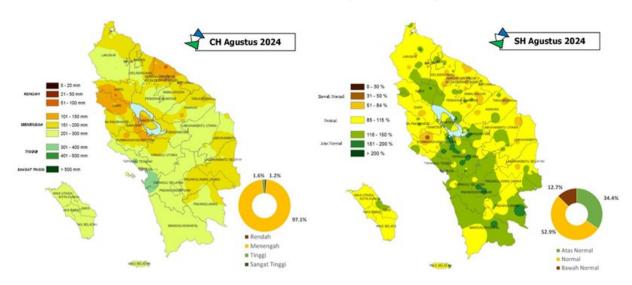
2.3 Prakiraan Awal Musim Kemarau Provinsi Sumatera Utara 2024

Gambar 2.3.1 Peta Prakiraan Awal Musim Kemarau 2024

2.3.1 Prakiraan Awal Musim Kemarau 2024 untuk Wilayah Tabagsel

- a. Wilayah ZoM Sumut_05 berkisar pada bulan Mei III Jun II dengan sifat musim Normal (N).
- b. Wilayah **ZoM Sumut_13** berkisar pada bulan **Jun I Jun III** dengan sifat musim **Normal (N).**
- c. Wilayah **ZoM Sumut_18** berkisar pada bulan **Jun I Jun III** dengan sifat musim **Normal (N).**
- d. Wilayah **ZoM Sumut_19** berkisar pada bulan **Mei I Mei III** dengan sifat musim **Normal (N).**
- e. Wilayah **ZoM Sumut_20** berkisar pada bulan **Jun II Jul I** dengan sifat musim **Normal (N).**
- f. Wilayah **ZoM Sumut_25** berkisar pada bulan **Jun II Jun I** dengan sifat musim **Bawah Normal (BN).**

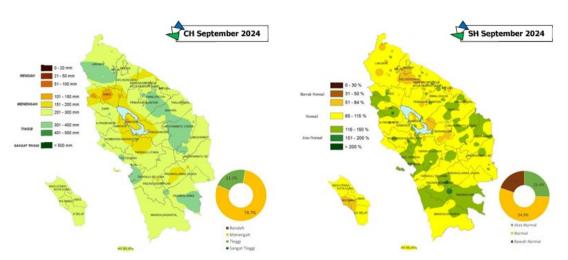
2.4 Prakiraan Puncak Musim Kemarau Provinsi Sumatera Utara 2024


Gambar 2.4.1 Peta Prakiraan Puncak Musim Hujan 2024

2.4.1 Prakiraan Puncak Musim Hujan 2024 untuk Wilayah Tabagsel

- a. Wilayah ZoM Sumut_05 meliputi Kab. Labuhanbatu Selatan bagian selatan.
- b. Wilayah **ZoM Sumut_13** meliputi **Kab. Labuhanbatu Selatan bagian selatan**, **Padang Lawas Utara bagian timur**.
- c. Wilayah ZoM Sumut_18 meliputi Kab. Padang Lawas Utara bagian utara, Tapanuli Selatan bagian utara.
- d. Wilayah **ZoM Sumut_19** meliputi **Kota Padang Sidempuan, Padang Lawas** bagian timur, Padang Lawas Utara bagian barat daya, Tapanuli Selatan bagian selatan.
- e. Wilayah **ZoM Sumut_20** meliputi **Kab. Padang Lawas, sebagian kecil Padang Lawas Utara.**
- f. Wilayah **ZoM Sumut_25** meliputi **Kab. Mandailing Natal bagian tengah dan timur.**

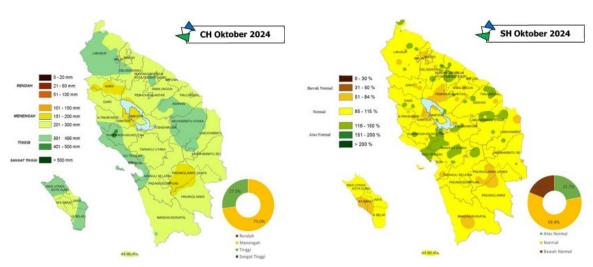
2.5 Prakiraan Curah Hujan dan Sifat Hujan Agustus, September, dan Oktober 2024 Tapanuli Selatan Sekitarnya - Sumatera Utara


2.5.1. Prakiraan Curah Hujan dan Sifat Hujan Bulan Agustus 2024

Gambar 2.5.1 Prakiraan Curah Hujan dan Sifat Hujan Agustus 2024

Prakiraan Curah Hujan **Sumatera Utara** Bulan Agustus 2024 pada umumnya berada dalam katagori **Menengah** (101 – 300 mm). Daerah yang diprakirakan memiliki Curah Hujan kategori **Tinggi** (301 – 400 mm) meliputi Sebagian kecil wilayah Tapanuli Selatan.

Prakiraan Sifat Hujan **Sumatera Utara** Bulan Agustus 2024 pada umumnya berada dalam katagori **Normal** hingga **Atas Normal**. Kategori **Bawah Normal** berada di Sebagian kecil wilayah Labuhan Batu Selatan.



2.5.2. Prakiraan Curah Hujan dan Sifat Hujan Bulan September 2024

Gambar 2.5.2 Prakiraan Curah Hujan dan Sifat Hujan September 2024

Prakiraan Curah Hujan **Sumatera Utara** Bulan September 2024 pada umumnya berada dalam katagori **Menengah** (101 – 300 mm). Daerah yang diprakirakan memiliki Curah Hujan kategori **Tinggi** (301 – 500 mm) meliputi Sebagian daerah Padang Lawas dan Sebagian kecil Wilayah Tapanuli Selatan dan Padang Lawas.

Prakiraan Sifat Hujan **Sumatera Utara** Bulan September 2024 pada umumnya berada dalam katagori **Normal** hingga **Atas Normal**.

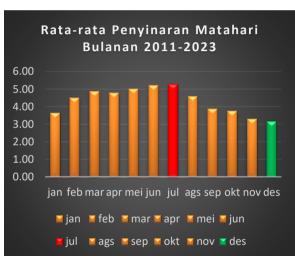
2.5.3. Prakiraan Curah Hujan dan Sifat Hujan Bulan Oktober 2024

Gambar 2.5.3 Prakiraan Curah Hujan dan Sifat Hujan Oktober 2024

Prakiraan Curah Hujan **Sumatera Utara** Bulan Oktober 2024 pada umumnya berada dalam katagori **Menengah** (101 – 300 mm). Daerah yang diprakirakan memiliki Curah Hujan kategori **Tinggi** (301 – 500 mm) meliputi Sebagian kecil Wilayah Tapanuli Selatan dan Mandailing Natal.

Prakiraan Sifat Hujan **Sumatera Utara** Bulan Oktober 2024 pada umumnya berada dalam katagori **Normal** hingga **Atas Normal**. Katagori Bawah Normal meliputi wilayah Padang Lawas Utara, Padang Lawas, dan Mandailing Natal.

III. DATA KLIMATOLOGI STASIUN METEOROLOGI AEK GODANG


3.1 Data Klimatologi

Berdasarkan hasil dari data Observasi Klimatologi Stasiun Meteorologi Aek Godang tahun **2011 hingga 2023** dapat disimpulkan sebagai berikut:

- Rata-rata penyinaran matahari dan rata-rata penyinaran matahari bulanan 2011-2023

Berdasarkan gambar di bawah terlihat bahwa rata-rata penyinaran matahari pada tahun 2011-2023 berkisar antara 2.83 hingga 5.33 jam per hari. Penyinaran matahari terlama terjadi pada tahun 2012 dengan nilai penyinaran matahari mencapai 5.33 jam dan penyinaran matahari terendah terjadi pada tahun 2015 dengan nilai penyinaran matahari mencapai 2.83 jam, sementara itu nilai rata-rata penyinaran matahari bulanan dari tahun 2011-2023 tertinggi terjadi pada bulan juli mencapai 5.25 jam dan nilai rata-rata penyinaran matahari terendah terjadi pada bulan desember mencapai 3.16 Jam

Gambar 3.1.1 Grafik Rata-Rata Penyinaran Matahari

- Rata-rata suhu udara dan rata-rata suhu udara bulanan tahun 2011-2023

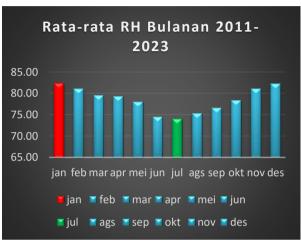
Berdasarkan gambar di bawah terlihat bahwa rat-rata suhu udara pada tahun 2011-2023 berkisar antara 25.77 °C hingga 27.08 °C. suhu udara tertinggi terjadi pada tahun 2016 dengan nilai 27.08°C dan suhu udara terendah terjadi pada tahun 2014 dengan nilai 25.77°C, sementara itu nilai rata-rata suhu udara bulanan dari tahun 2011- 2023 tertinggi terjadi pada bulan Mei dengan Nilai 26.86°C terendah terjadi pada bulan januari dengan Nilai 25.32°C

Gambar 3.1.2 Grafik Rata-Rata Suhu Udara

Jumlah total curah hujan dan rata-rata jumlah curah hujan bulanan tahun 2011-2023

Berdasarkan gambar di bawah terlihat bahwa total curah hujan pada tahun 2011- 2023 berkisar antara 1236.60 mm hingga 2808.00 mm. Curah hujan tertinggi terjadi pada tahun 2015 dengan nilai 2808.00 mm dan curah hujan terendah terjadi pada tahun 2016 dengan nilai 1236.60 mm, sementara itu nilai rata-rata curah hujan bulanan dari tahun 2011-2023 tertinggi terjadi pada bulan desember dengan Nilai 310.23 mm dan nilai curah hujan terendah terjadi pada bulan Juli Nilai 85.91 mm

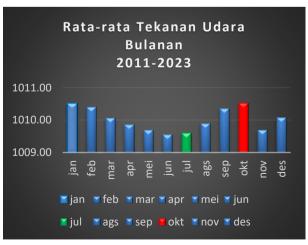




Gambar 3.1.3 Grafik Rata-Rata Curah Hujan

- Rata-rata RH dan rata-rata RH bulanan tahun 2011- 2023

Berdasarkan gambar di bawah terlihat bahwa rata-rata RH pada tahun 2011-2023 berkisar antara 73.25 % hingga 80.82%. RH tertinggi terjadi pada tahun 2020 dengan nilai 80.82% dan RH terendah terjadi pada tahun 2017 dengan nilai 73.25 %, sementara itu nilai rata-rata RH bulanan dari tahun 2011-2023 tertinggi terjadi pada bulan Januari dengan Nilai 82.29 % dan nilai RH terendah terjadi pada bulan Juli dengan Nilai 74.03 %.



Gambar 3.1.4 Grafik Rata-Rata Relative Humidity

- Rata-rata Tekanan dan rata-rata Tekanan bulanan tahun 2011- 2023

Berdasarkan gambar di bawah terlihat bahwa rata-rata Tekanan Udara pada tahun 2011-2023 berkisar antara 1008.91 mb hingga 1011.54 mb. Tekanan tertinggi terjadi pada tahun 2015 dengan nilai 1011.54 mb dan Tekanan terendah terjadi pada tahun 2022 dengan nilai 1008.92 mb, sementara itu nilai rata-rata tekanan bulanan dari tahun 2011-2023 tertinggi terjadi pada bulan Oktober dengan Nilai 1010.65 mb dan nilai tekanan terendah terjadi pada bulan Juli dengan Nilai 1009.68 mb .

Gambar 3.1.5 Grafik Rata-Rata Tekanan

Daftar Istilah

MJO (Madden Jullian Oscillation) Osilasi Madden Jullian merupakan fenomena skala global di kawasan tropis, yang berkaitan dengan penambahan gugusan uap air yang mensuplai pembentukan awan hujan. Fenomena ini terkait dengan variasi angin, perawanan, curah hujan, suhu muka laut, dan penguapan dipermukaan laut pada skala ruang yang luas. MJO diinterpretasi berdasarkan pengukuran OLR (Outgoing Longwave Radiation) menggunakan satelit. OLR merupakan radiasi gelombang panjang yang dipancarkan besar kecilnya bumi keluar anakasa, yana dipengaruhi oleh tutupan awan Karena radiasi gelombang panjang sulit untuk menembus partikel awan. Jika OLR bernilai negatif, maka wilayah yang dilewatinya cenderung banyak awan hujan, sedangkan jika OLR bernilai positif, wilayah yang dilewatinya cenderung sedikit atau kurang banyak awan hujan.

Ganaguan	:	Gangguan tropis merupakan fenomena yang terjadi di sekitar
Mobis	:	Ferende Languis, divarend adanya tekanan tinggi di Australia tekanan tinggi di Australia
Kondisi Suhu	:	yang berkaitan dengan berlangsungnya musim kemarau di Ƙନ୍ଦେନ୍ତ୍ରାଞ୍ଜ୍ରାଧ୍ୟନ୍ତ permukaan laut di wilayah perairan Indonesia
Permukaan Cu rah Haj an Wilayah Perairan Indonesia	:	EURAH NOJEHNALEHUP AREMPREHIN BURUH ARTHUJUNTIKATE JEHUN SEKARA PERJUKAJAN BERJEKAN BERJUKAJAN BERJUKAJAN BERJEKAN BERJUKAJAN BERJUKAN BERJUKAN BERJUKAN BERJUKAN BERJUKAN BERJUKAN BERJUKAN BERJUKAN

Normal Hujan	:	Normal hujan bulanan adalah nilai rata – rata curah hujan masing – masing bulan selama periode 30 tahun berturut – turut. Normal curah hujan ini terbagi menjadi 3 kategori, yaitu rendah (0 – 100 mm), menengah (100 – 300 mm), tinggi (300 – 500 mm), dan sangat tinggi (>500 mm).
Sifat Hujan		Sifat hujan dibagi menjadi tiga kategori, yaitu: Di Atas Normal (A), jika nilai perbandingannya >115% Normal (N), jika nilai perbandingannya antara 85% - 115% Di Bawah Normal (B), jika nilai perbandingannya < 85%. Mengingat bahwa curah hujan rata – rata bulanan di suatu tempat tidak selalu sama dengan tempat lainnya, maka yang dimaksud dengan sifat hujan dalam bulletin ini adalah perbandingan antara jumlah curah hujan selama sebulan dengan nilai rata – rata atau normalnya pada bulan tersebut di suatu tempat. Dengan demikian daerah yang sifat hujannya di Bawah Normal (B) tidak berarti di daerah tersebut kurang hujan, demikian halnya daerah yang sifat hujannya di Atas Normal (AN) tidak berarti banyak hujan. Hal ini tergantung pada rata – rata bulanannya pada tempat yang bersangkutan.
Intensitas Curah Hujan	:	Ringan: Curah hujan 5 – 20 mm/hari atau 1 – 5 mm/jam Sedang: Curah hujan 21 – 50 mm/hari atau 5 – 10 mm/jam Lebat: Curah hujan 51 – 100 mm/hari atau 10 – 20mm/jam Sangat lebat: Curah hujan 101 -150 mm/hari atau>20mm/jam Hujan Ekstrem: > 150 mm/hari
Cuaca Ekstrim	:	Kondisi cuaca yang terjadi di suatu daerah yang melebihi keadaan rata – ratanya atau diluar kebiasaan.